Self-similar pressure oscillations in neutron star envelopes as probes of neutron star structure
نویسنده
چکیده
We study eigenmodes of acoustic oscillations of high multipolarity l ∼ 100–1000 and high frequency (∼100 kHz), localized in neutron star envelopes. We show that the oscillation problem is self-similar. Once the oscillation spectrum is calculated for a given equation of state (EOS) in the envelope and given stellar mass M and radius R, it can be rescaled to a star with any M and R (but the same EOS in the envelope). For l 300, the modes can be subdivided into the outer and inner ones. The outer modes are mainly localized in the outer envelope. The inner modes are mostly localized near the neutron drip point, being associated with the softening of the EOS after the neutron drip. We calculate oscillation spectra for the EOSs of cold-catalyzed and accreted matter and show that the spectra of the inner modes are essentially different. A detection and identification of high-frequency pressure modes would allow one to infer M and R and determine also the EOS in the envelope (accreted or ground state) providing a new, potentially powerful method to explore the main parameters and internal structure of neutron stars.
منابع مشابه
Different Magnetic Field Distributions in Deformed Neutron Stars
In this work, we review the formalism which would allow us to model magnetically deformed neutron stars. We study the effect of different magnetic field configurations on the equation of state (EoS) and the structure of such stars. For this aim, the EoS of magnetars is acquired by using the lowest order constraint variational (LOCV) method and employing the AV18 potential....
متن کاملSpin and Isospin Asymmetry, Equation of State and Neutron Stars
In the present work, we have obtained the equation of state for neutron star matter considering the in uence of the ferromagnetic and antiferromagnetic spin state. We have also investigated the structure of neutron stars. According to our results, the spin asymmetry stiens the equation of state and leads to high mass for the neutron star.
متن کاملFuture Probes of the Neutron Star Equation of State Using X-ray Bursts
Observations with NASA’s Rossi X-ray Timing Explorer (RXTE) have resulted in the discovery of fast (200 600 Hz), coherent X-ray intensity oscillations (hereafter, “burst oscillations”) during thermonuclear X-ray bursts from 12 low mass X-ray binaries (LMXBs). Although many of their detailed properties remain to be fully understood, it is now beyond doubt that these oscillations result from spin...
متن کاملResonant Oscillations and Tidal Heating in Coalescing Binary Neutron Stars
Tidal interaction in a coalescing neutron star binary can resonantly excite the g-mode oscillations of the neutron star when the frequency of the tidal driving force equals the intrinsic g-mode frequencies. We study the g-mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, where we determine self-consistently the sound speed and Brunt-Väisälä frequency i...
متن کاملThe effective inertial acceleration due to oscillations of the gravitational potential: footprints in the solar system
The conjecture is considered that every body induces the wave field which imposes oscillations on the gravitational potential of a body. The function for oscillations is chosen to prevent the gravitational collapse of the matter at the nucleus energy density. The conjecture leads to modification of the Newtonian gravity. The effect is too small to be seen in observations in the solar system. Os...
متن کامل